If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying -6 + 8v = v2 Solving -6 + 8v = v2 Solving for variable 'v'. Combine like terms: v2 + -1v2 = 0 -6 + 8v + -1v2 = 0 Begin completing the square. Divide all terms by -1 the coefficient of the squared term: Divide each side by '-1'. 6 + -8v + v2 = 0 Move the constant term to the right: Add '-6' to each side of the equation. 6 + -8v + -6 + v2 = 0 + -6 Reorder the terms: 6 + -6 + -8v + v2 = 0 + -6 Combine like terms: 6 + -6 = 0 0 + -8v + v2 = 0 + -6 -8v + v2 = 0 + -6 Combine like terms: 0 + -6 = -6 -8v + v2 = -6 The v term is -8v. Take half its coefficient (-4). Square it (16) and add it to both sides. Add '16' to each side of the equation. -8v + 16 + v2 = -6 + 16 Reorder the terms: 16 + -8v + v2 = -6 + 16 Combine like terms: -6 + 16 = 10 16 + -8v + v2 = 10 Factor a perfect square on the left side: (v + -4)(v + -4) = 10 Calculate the square root of the right side: 3.16227766 Break this problem into two subproblems by setting (v + -4) equal to 3.16227766 and -3.16227766.Subproblem 1
v + -4 = 3.16227766 Simplifying v + -4 = 3.16227766 Reorder the terms: -4 + v = 3.16227766 Solving -4 + v = 3.16227766 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '4' to each side of the equation. -4 + 4 + v = 3.16227766 + 4 Combine like terms: -4 + 4 = 0 0 + v = 3.16227766 + 4 v = 3.16227766 + 4 Combine like terms: 3.16227766 + 4 = 7.16227766 v = 7.16227766 Simplifying v = 7.16227766Subproblem 2
v + -4 = -3.16227766 Simplifying v + -4 = -3.16227766 Reorder the terms: -4 + v = -3.16227766 Solving -4 + v = -3.16227766 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '4' to each side of the equation. -4 + 4 + v = -3.16227766 + 4 Combine like terms: -4 + 4 = 0 0 + v = -3.16227766 + 4 v = -3.16227766 + 4 Combine like terms: -3.16227766 + 4 = 0.83772234 v = 0.83772234 Simplifying v = 0.83772234Solution
The solution to the problem is based on the solutions from the subproblems. v = {7.16227766, 0.83772234}
| 9.60x+.5(8-x)=.10(103) | | c^2+6x=-3 | | 3+p= | | 3x^2-22-16= | | 0.40x+.05(16-x)=.10(36) | | 12-2m+5=m | | -6+5=n | | -6-5=n | | 12-18=m | | 56+-6x= | | 3t^2=5t-1 | | Graphy=x+3 | | 8x-(5x-4)= | | 16x(x+2)-8=16x+24 | | -3-8-4x-7x=-2-8 | | 0.3333(y-6)=4y-0.4(2-y) | | -2(9-3a)-(5a+2)=-25 | | 4z^2-117=3 | | .01*.3= | | 10k-[3k+(-3+5k)]= | | 12x-7x-10=0 | | T^2+12T+42=0 | | 7-8x=-21 | | s^2-45+8=0 | | 4(3x-2)=12 | | 4(3x-2)=3 | | -8x=-96 | | 9-3x=21 | | 23+x=-12 | | 7-8x=-17 | | 10x-5=-95 | | -45=-6x+3 |